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Abstrect. Using the theory of Young syrmmetrizers we show how to obtain algebras which 
are sufficient for causal propagation of higher-spin particles interacting with an extemal 
minimal electromagnetic field. The convnutation relations of the algebra are derived 
already expressed in irreducible Young symmetrizer form. An example is given which is not 
equivalent to any known causal theory and it is shown that the algebra is &te. Thus, the 
requirement of causal electromagnetic interaction is not sufficient to generate a finite 
algebia and non-trivial sub-algebras may exist which are causal. 

There is now considerable literature on the Velo-Zwanzinger inconsistency for the 
external field problem in higher-spin theories (Velo and Zwanzinger 1969), in which 
apparently manifestly covariant field equations have solutions which propagate acaus- 
ally. It is still true that no causal theories are known forspin greater than one interacting 
with an external field, even at the non-quantized level. Nor is the problem removed by 
consideration of full interaction, as opposed to external field interaction (Capri and 
Shamaly 1974) or by quantization (Johnson and Sudarshan 1961). 

The usual approach to the external field problem for higher spin is to consider 
specific constructed free field theories, in which the field variables have known 
transformation properties and the field equation can be written explicitly in tensor- 
spinor form or matrix form. Thus, starting with a known free field theory one introduces 
the external interaction by standard recipes and investigates the propagation properties 
of the resulting theory by the standard methods of analysis of differential equations 
(Courant and Hilbert 1962, Hormander 1963). There are many examples of this 
approach in the literature and the basic conclusion is that whilst all known sph-1 
theories are causal when interacting minimally with an external electromagnetic field, 
and also with some other fields, all known higher-spin theories either propagate 
acausally or not at all, in any external field (Capri and Shamaly 1972, Velo 1972, Sin& 
1973). There are exceptions in the case of theories with mass-sph spectra, but these 
usually exhibit other problems and we do not consider them here (Cox 1976). It is 
tempting to conclude that all higher-spin theories are causal in interaction, but as there 
are so few good free field theories which are amenable to simple analysis in the presence 
of an external field, there is little basis for doing this. In fact the constructed theories for 
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spin greater than one are very limited and all but the simplest (e.g. spin 5 and Some spin 
2) are too complicated to analyse in the usual way, the main problem being the 
constraints used to ensure manifest covariance of the field equations. 

Another approach to higher-spin field theories is that based on the first-order free 
field equation: 

-m)+ = (r . p -  m)+ = o (1.1) 
and which studies the algebra of the matrices rH and m. Here, we take m to be a scala 
matrix. In this approach, pioneered by Harish-Chandra (1947a, b) and Bhabha (1949), 
the enveloping algebra of the r, is specified a priori by imposing certain algebraic 
relations in these matrices. By standard algebraic methods it is then possible to 
determine the matrix representations of the r, and the corresponding mass-spin 
spectra carried by the field I). The prototype of this approach is the well known 
DufEn-Kemmer theory (Kemmer 1939). For many years this approach was neglected 
because of the difficulties of finding and manipulating suitable Tr algebras. The 
complete analysis of the constructive aspect of (1.1) was given by Gel’fand and Yaglom 
(Gel’fand et a1 1963) including the infinite-dimensional case, but no attempt was made 
at a complete algebraic analysis. Shelepin (1960) made such a study and anticipated 
much of the more recent work of Glass (197 1) who made a detailed investigation of the 
algebraic approach and its relation to known constructed theories. While the algebraic 
approach is difficult in the case of higher-spin theories, it does have the advantage of 
generality and allows us to isolate all of the behaviour of-the system in the properties of 
the r, matrices. In any case there remain very few constructed theories which are not 
too complicated €or interaction analysis. 

In this paper we obtain sufficient algebraic conditions for a causal theory based on 
(1.1) interacting minimally with an external electromagnetic field. The rp generate a 
tensor algebra and we obtain the equations in forms irreducible under general linear 
transformations in the tensor space of rH products, using standard theory of Young 
tableaux. The equations are obtained by requiring that the principal part of the true 
equation of motion for the field + (i.e. after constraints are eliminated), derived from 
(l.l), is Klein-Gordon in the presence of an external field. If this is the case then the 
theory will clearly be causal. Further, we show that the algebra generated by these 
conditions is infinite. It is well known that for high spin the usual free field requirements 
of covariance, unique mass, etc are not sufficient to ensure that the algebra generated by 
the r, is finite and that further conditions are required to make it finite (Marish- 
Chandra 1947a, b). It is therefore interesting to see that the added condition of causal 
propagation, in the particular cases considered here, is still not sufficient to guarantee 
finiteness of the algebra and that we are still at liberty to prescribe further relations. This 
in itself does not mean that the algebra has non-trivial representations yielding a good 
causal theory, and in fact it is very difficult to decide this, owing to the complexity ofthe 
algebra. However, it is suggestive and provides some motivationtfor further smdy ofthe 
algebra. 

2. Sufficient algebraic conditions for a causd theory 

Following Vel0 and Zwanzinger (1971), we introduce an external electromagnetic field 
into the theory (1.1) by the minimal replacement: 

(2.1) 
PH + T H  = P p  +eA, 



EM interaction and higher-spin fie& theories 1027 

where 

[vfi, d$ = ieF,& 
for an arbitrary space-time function $. 

(1.1) becomes 

(2.3) (r. rr-m)4=0. 
In general the time coefficient matrix r4 is singular and so (2.3) will not be a true 
equation of motion4ertain of the field components will not have their time derivatives 
determined. To obtain from (2.3) a true equation of motion we use the Klein-Gordon 
divisor d(p), which is a matrix differential operator such that 

d(p)(r. p - m) = (p'- m2)1. (2.4) 
In the free field case this is easily calculated as a polynomial in p and r, using the 
minimal polynomial of the r,. For if we take 

2 
d(p) = m + r . p + (r. p ) 2 - p 2  + T r . p + . . .  (r . p ) 2 - p z  + (r * P I 2 - P  (r . p)'-l (2.5) m m m' 
and operate on (1.1) we get 

which is the Klein-Gordon equation if 

[(r . p) ' -p21(r .  pi r  = 0. (2.7) 
Since the components of p ,  are arbitrary and commutative this yields the usual 
Harish-Chandra commutation relations for free field unique mass theories: 

1 (r,rv - sGY)rp. . . r, = o (2.8) 

where the summation is over all permutations of the indices. This equation is of degree 
r i - 2  in the I?,. By putting all indices equal we obtain the minimal polynomials for each 
r,: 

(r:- i)r; = 0. (2.9) 

For the interaction case, (2.3) we operate with d ( ~ )  and obtain 

(2.10) 

Since the rw are not commutative, the free field relations (2.7) do not ensure that (2.9) is 
the Klein-Gordon equation, because 

P , ( ~ )  = [(r . r )2 -  2](r .dr (2.11) 

will no longer vanish as a consequence of (2.7). As Vel0 and Zwamhger (1971) 
observe, (2.1 1) is of order T in the derivatives by virtue of (2.8), so 

The propagation of (2.10) is determined by the coefficiFnt of the derivatives of highest 
order and €or T S  1 this will be r2, the same as for the simple Klein-Gordon equation. 

P,(m) = O(eFr'). 
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Thus for r c 1 the theory is bound to be causal in the presence of an external field. 
Howeger, for r >  1, Pr ( r )  will contain second-order derivatives in general and except 
for accidental cancellations may lead to acausality or even destroy the hyperbolic nature 
of the equation. Now it is well known that even in the free field case a quantizable theory 
(correct positivity conditions on energy and charge) based on (1.1) must have a minimal 
polynomial for r4 with r > 1, i.e. r4 is non-diagonalizable (Gel’fand eta! 1963). SO with 
high-spin theories we can expect causality problems. Amar and Dozzio (1975) in fact 
have shown that all theories, with or without mass spectra, are causal provided the 
singular subspace of r4 is diagonalizable, which is the generalization of the treatment of 
Vel0 and Zwanzinger (1971). Amar and Dozzio also state that so far they have not been 
abIe to find a theory with r > 1 and causal propagation. In fact Capri and Shamaly 
(1973) have obtained a causally propagating theory for which r = 3. So we cannot hope 
to say that such theories do not exist for r > 1, but since the Capri-Shamaly theory is 
spin-1, it does not give us a higher-spin causal theory. However, it does exhibit the 
possibility of I‘ algebras having r > 1 and causal propagation, and it may be that some of 
these algebras carry higher spin. Thus the ‘accidental cancellations’ of Vel0 and 
Zwanzinger can and do occur, and a more careful study of PI(.rr) might be rewarding, 

A sufficient condition for causal propagation in (2.10) is clearly 

= O ( r )  (2.12) 

i.e. is at most first-order in derivatives. We may stili get causal theories with 
P,(T) -O(T*) but the analysis of such theories is extremely difficult. Now, introducing 
the notation Mfivp...e = (rJv - SJT, . . . rE we have 

P , ( ~ )  = (r,r, - s,,)r,. . . . . = M,~,. .€T,rV . . . re. 

We now introduce the Young symmetrizers %-and the conjugate symmetrizers t, 
which are elements of the group algebra of the symmetric group of r objects, S r .  They 
operate on the indices of an arbitrary rth rank tensor MpIPZ.,+, to produce symmetry 
classes of tensors providing bases for irreducible representations of GL(N) (Boerner 
1963). The Y,  are constructed from the standard tableaux of appropriate Young frames 
by first symmetrizing with respect to indices in the rows and then anti-symmetrizing 
with respect to the indices in the columns of the frame. The conjugate symmetkers Yi 
are obtained by transposing the tableau of Y,  and first anti-symmetrizing with respect to 
the indices in the rows and then symmetrizing with respect to the indices in the colu”. 
Thus, if Ti is the tableau of Y ,  and Pi represents the sum of all permutations of indices in 
the rows, while Q, represents the sum of all permutations of the indices in the columns, 
each multiplied by its parity 8,: 

where p are horizontal permutations and q are vertical permutations, then 

Y,  QJ’i = PiQi. 

An arbitrary rth rank tensor can be expanded in terms of the rth rank symmetkers 
according to 

(2.13) 

where ~ i ’  denotes the symmetrizer corresponding to the ith standard tableau of the 
Young frame F and An is the number of standard tableaux for the frame 
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analogous expression exists in terms of the conjugate symmetrizers. We can now prove 
the following theorem. 

Theorem 

Proof 
This relies simply on noting that if Y is any symmetrizer then for any tensors Fand G: 

(~p.. .~Gp.. .€=FlL..€(~G),, . . . .~ 
since: 

by change of dummy indices, we get 

FM...A pG)g...e = C 8, Fq-lp- l (p . . .E)  G,,....€ = C 6, Fqp(p..c)Gw..r 
w w 

since the q-'(p- ' )  range over the same permutations as do the q(p), we have 

Fp...d = ( QPI;3P...eGkL..E = ( WF..eGw..e- 
Using this result we have, if S is the set of indices i such that ( E V ) ~ . . ~ =  0 ( r r ) r 2 2 :  

PAT) = Mp ... ... e = C ai( YiWp .., e r  &..e 
i 

on expanding the tensor MP,..€in terms of the Young symmetrizers 

This theorem provides a simple procedure for obtaining-U(r) for some causal 
theories directly in Young symmetrizer form. We look at all ( X T ) ~ . . . ~  ranging over all 
standard tableaux of rank r + 2  and, using (2.2), find a11 those which are second- or 
higher-order in the derivatives. For each such tableau we have the algebraic condition 

which is a polynomial of degree r + 2 in the rw The commutation relation of Harish- 
Chandra (2 .8)  corresponds to the vanishing of the completely symmetric symmetrizer 
constructed from the Young frame consisting of a single row of I +  2 boxes. The other 
standard tableaux yield further algebraic relations independent of this and furrher 
restricting the algebra to yield a causal theory. 

(Y ,M) ,  ... € = 0 

3. Examples 

3.1. r =  1 

This examplc only serves as a simple illustration of the method since, as we have already 
noted, for r = 1 the theory is bound to be causal. 
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Since only the completely symmetric rank 3 symmetrizer of the r, is not O(n) we 
need only demand that 

which gives 

r,r,rp +rPrprv+rprPru +rpr,r,+rur,rp +r,rprP = 2 4 ~ ,  +2aPpr, +2sp,r,. 
(3.1) 

This relation is a sufficient condition for causality. As is well known this does not 
generate a finite algebra, and to ensure this we can append other relations of the form 
( l".f)Pup= 0. The Duffin-Kemmer theory corresponds to the algebra 

( Y i W P U P  = 0 (3.2) 

(YpM),,=O (3.3) 

which has two non-trivial representations and is usually expressed in the more succinct 
form 

r,rurp+rpr,rP = spurp +ap,rP 
which is easily seen to be equivalent to (3.2) and (3.3). 

3.2. r = 2  

The fourth rank standard tableaux are 

I-iTTJqq 6'- = Q(r4) 
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Using these results and the theorem of 0 2 we obtain the sufficient conditions for 
causality in the following form: 

This algebra, if it possesses any non-trivial representations may provide a causal 
higher-spin theory. 

We can continue this process and obtain algebras for higher values of r-with 
increasing amount of labour. It is not clear whether the r = 3 example of Capri and 
Shamaly (1973) would be obtained by this process or whether it corresponds to a case in 
which P,(T) = O(7i2). 

4. Discussion of the algebra (3.4) 

The general problem of analysing algebras defined by Young symmetrizer equations 
such as (3.4) seems to be very difficult, and requires some practical development. 
However, it is possible to deduce from equations such as (3.4) the number of indepen- 
dent elements in the algebra and, in particular, to show that the algebra generated by 
(3.4) is infinite. 

Consider a fourth rank product rFvm= r,JVrPra of the f,. According to (2.13) we 
can expand this in the form 

“ t i  
But from the algebra (3.4) this must reduce to: 

+r products of 2nd rank. 

U 

Since we are interested in the independent products of rank four and above we can 
ignore the products of rank two in the following. NOW let s be any permutation of S4, 
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operating on the indices pvpcr, and consider 

U 

It can be shown that the only permutations s which satisfy 

are those of the group 

G ={e, ( P Y ) ( P d  ( P P k ) ,  (W)(V) l  
and in each case c = 1, so that the permutations of G constitute the full symetry 
imposed on the fourth rank products by the algebra (3.4)-G leaves rPvpa invariant, 
apart from possibly the addition of second rank products. 

Now if we consider an rth rank product ( I  > 4) rpv..€= rJ,. . . r, then the algebra 
(3.4) allows us to perform the elements of G on any four adjacent indices-and only the 
elements of G-leaving rFv...€ invariant except possibly for the addition of lower rank 
products of the rp, which can be ignored when considering the independent rth rank 
products. r,Y...E is therefore effectively invariant under the set of all permutations of G 
on four adjacent indices, and this set generates a subgroup P of S ,  which defines the 
complete symmetry of an rth rank product imposed by the algebra (3.4). Once the 
symmetry of a tensor is known, we can calculate the number of independent compo- 
nents, and for rev...€ this gives the number of independent rth rank products in the 
algebra. Repeating the process for each I gives the number of independent elements in 
the algebra. If the number of components for a certain rank r is zero then the algebra is 
finite. 

Suppose rpu...E has symmetry 

P = {pi) 
where pi are permutations of S, such that 

pi * r w u  ...e = *rp ,...e 

so that rpu...E is either invariant under a permutation of P or changes sign. Then, if this 
defines the complete symmetry of rPu,,.€, the number of independent components Of 

rpU...€ is given by 
1 

np = - p x ( E " ) X ( E b ) .  . . X(Ef) 
IPI Pi 

where the cycle structure of pi is (a, 6, . . , , f), /PI =order of P, and f is assigned 
according to whether rpv...E is invariant or changes sign under pi. If rpu...6 is a tensor with 
respect to GL(N then x(E)  is the character of the unit element E in the vector 
representation, i.e. x ( E )  = N.  In our case x(E)  = 4 (Bkagavantam 1966). In pafiiculW 
if rpV...€ does not change sign under any element of P the np can never be zero and SO the 
algebra will be infinite. This occurs in the case of the algebra (3.4)-no permutation 
changes the sign of rPY...E, so there will always be independent comDonents for all ranks 
of Products, and the algebra is therefore infinite. 

We are thus at liberty to supplement the algebra (3.4) with further tensor relations to 
make it finite and possibly obtain a good causal theory for higher spin. The additional 
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equation can only be obtained by equating one or more of 

U 

to zero and in fact it seems that say 

will make the algebra finite. A detailed study of this algebra is in progress. It should be 
noted that it is not equivalent to any known causal theory, since the minimal polynomial 
of Fo is I'i(ri - 1) and the only well known theory with this minimal polynomial is the 
Rarita-Schwinger spin-:, which is acausal. 

Note added in proof. The algebra is finite, but cannot yield a theory with spin greater 
than one. Details to be published shortly. 
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